16 research outputs found

    The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs

    Get PDF
    Northern Eurasia, the largest landmass in the northern extratropics, accounts for ~20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    Continuous Daily Observation of the Marine Atmospheric Boundary Layer over the Kuroshio by a Helicopter Shuttle Service

    Get PDF
    This paper describes a new initiative in which in situ observations of the marine atmospheric boundary layer (MABL) are made by a helicopter shuttle connecting six islands south of Tokyo. This observation method aims to make frequent measurements of temperature and moisture in the MABL across an ocean front, where direct measurements of the MABL have been limited. An onboard observation system to meet flight regulations was developed. Observed temperature and moisture as a function of pressure at 1-s intervals provided vertical profiles up to the 900-hPa level above each of the islands, from 24 December 2010 to 6 April 2011, with the exception of an accidental power down in mid-February 2011. The observed values are validated by intercomparison with surface measurements from weather stations, atmospheric soundings, and mesoscale weather analysis provided by the Japan Meteorological Agency. Temperature and moisture values obtained using the system described here at the surface are significantly correlated with those from the weather station. The meridional changes revealed by the observed vertical profiles depict rich MABL structures, such as a cold-air intrusion and a strong near-surface inversion, that are not captured by the mesoscale weather analysis. However, this discrepancy is probably due to insufficient treatment in the mesoscale numerical model rather than observational errors. Additional intercomparisons indicate no influence from either artificial mixing by the helicopter rotor or by dynamic pressure caused by the fast-moving helicopter when obtaining the vertical profiles. Following these validations, the continuation of the initiative will allow for examining the influence of the ocean front on the overlying MABL on a synoptic time scale

    Coherent Eddies Transporting Passive Scalars Through the Plant Canopy Revealed by Large-Eddy Simulations Using the Lattice Boltzmann Method

    No full text
    A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field in a neutrally stratified turbulent flow is described. In simulations of the scalar turbulence within and above a homogeneous plant canopy, the model's performance is found to be comparable with that of a conventional large-eddy simulation model based on the Navier-Stokes equations and a scalar advection-diffusion equation in terms of the mean turbulence statistics, budgets of the second moments, power spectra, and spatial two-point correlation functions. For a top-down scalar, for which the plant canopy serves as a distributed sink, the variance and flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. These sweep motions, which have spatial scales much larger than the canopy height, penetrate deep inside the canopy and cause scalar sweep events near the canopy floor. By contrast, scalar ejection events near the canopy floor are induced by coherent eddies generated near the canopy top. The generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy. The non-local transport of scalars from above the canopy to the canopy floor, and vice versa, is driven by these eddies of different origins. Such non-local transport has significant implications for the scalar variance and flux budgets within and above the canopy, as well as the transport of scalars emitted from the underlying soils to the atmosphere
    corecore